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ABSTRACT

Consider the standard linear program:

Minimize c x -

subject to: A x b

2>0

where A is an m x n matrix. The simplex algorithm solves this linear
program by moving from extreme point of the feasibility region to a better
(in terms of the objective function c x) extreme point (via the pivot
operation) until the optimal is reached. In order to obtain a feel for
the number of necessary iterations, we consider a simple probabilistic
(Markov chain) model as to how the algorithm moves along the extreme points.
At first we suppose that if at any time the algorithm is at the jth best
extreme point then after the next pivot the resulting extreme point is
equally likely to be any of the j - 1 best. Under this assumption, we
show that the time to get from the Nth best to the best extreme point has
approximately, for large N , a Poisson distribution with mean equal to
the logarithm (base e) of N . We also consider a more general probabi-
listic model in which we drop the uniformity assumption and suppose that
when at the jth best the next one is chosen probabilistically according to
weights wi , i-i, ... , j -1

II'



A SIMPLE HEURISTIC APPROACH TO SIMPLEX EFFICIENCY

by

Sheldon M. Ross

1. INTRODUCTION

Consider the standard linear program:

Minimize c x

subject to: A x b

x> 0

where A is an m x n matrix. The simplex algorithm solves this

linear program by moving from extreme point of the feasibility region

to a better (in terms of the objective function c x) extreme point

(via the pivot operation) until the optimal is reached. As there are

roughly N E(i) such extreme points it would seem that this method

might take many iterations but, surprisingly to some, this does not

appear to be the case in practice.

In order to obtain a feel for whether or not the above is sur-

prising, we consider a simple probabilistic (Markov chain) model as to

how the algorithm moves along the extreme points. At first we suppose

that if at any time the algorithm is at the jth best extreme point

then after the next pivot the resulting extreme point is equally likely

to be any of the j - 1 best. Under this assumption, we show that the

time to get from the Nth best to the best extreme point has approximately,

for large N , a Poisson distribution with mean equal to the logarithm

(base e) of N . We also consider a more general probabilistic model
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in which we drop the uniformity LSSUMption and suppose that when at

the jth best the next one is chosen probabilistically according to

weights w~ i i, . ,j 1



2. THE UNIFORM MARKOV CHAIN

Consider a Markov chain for which P11  1 and

=1

and let T. denote the number of transitions to get from state N

to state I . Then TN can be expressed as

TN I
J=l

where

1f if the process ever enters j
lj = I0 otherwise.

Proposition 
1:

1, l' ., IN-1  are independent and

P{I .1} - I *J , I < j N - 1

Proof:

Given Ij+l, .... I let n = min (i : i >J , I i  } Then

{j 1 j+ '"' IN j/(n-1)
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Corollary 2:

N-i
(i) E[(TI - I 1/i

i-i

(ii) Var (TN 1
N -Jl

(ii) or lrge T hN approximately a Poisson distribution

with mean log N

Proof:

Parts (i) and (ii) follow from Proposition 1 and the representation

N- 1
TN J1 Ij Part (iii) follows from the Poisson limit theorem since

N N-l1/ <1 N-1

f~~~ 7 /
1 f

or

N-1

and so

N- 1
log N~ I 1/j

J-i
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3. APPLICATION TO SIMPLEX

Assuming that n , m and n- m are all large, we have by

Stirling's approximation that

n nn+ 1/2

(nm - n-m+ 1/2 m+ I / 2 r

and so letting c = n/m

log N - (mc + 1/2) log (mc) - (m(c - 1) + 1/2) log (m(c - 1))

- (m + 1/2) log m - 1/2 log (2i)

or

log N- m tc logc c 1 + log (c - 1)]

Now, as lim x log (x/x - 1) = 1 , it follows that when c is large

log N m[l + log (c - 1)]

Thus for instance if n - 8000 , m = 1000 , then the number of necessary

transitions is approximately Poisson distributed with mean

1000(1 + log 7) = 3000 . As the variance is equal to the mean, we see

by the normal approximation to the Poisson that the number of necessary

transitions would be roughly between

3000 + 2yr30 or , roughly, 3000 + 110

95 percent of the time.
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4. A WEIGHTED MARKOV CHAIN MODEL

Suppose now that P = 1 and

= wj

Pij w I1 ... +w i I i-i

With this model we are thus able to give more weight to those states

closest to the one presently at by letting w. increase in jJ

Analogously with Proposition 1, we have

Proposition 2:

If

1l if j is ever visited

j 10 otherwise

Then 11..., I are independent and

w
P{il 11. 1,1 < j <N -1

N-1

In addition, if TN Ij Then
J=l

E[TN -- T wj/ wi

Var (TN)= N I (1w W
J I w

Lj
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If for instance we use polynomial weights--w j 0 < a < then

i=l

J.

x xdx

1

ci+l

ci+l

and so

S(a + 1) +-!

i+l

Hence

N-1

E[TN] .l z a + 1 dx = (a + 1) log (N -I)

and thus in this case TN has, for large N , approximately a Poisson

distribution with mean (a + 1) log N . Thus when N- (n) ,the number of

transitions (i.e., simplex pivot iterations) is approximately Poisson with

mean

(CL + 1) in c log ( + log (c -l)]~ c =n/in

which when c is large is approximately

(a + l)m[l + log (c - 1)]
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